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Let y=s+n be a point mass perturbation of a classical moment functional s by
a distribution n with finite support. We find necessary conditions for the polyno-
mials {Qn(x)}.n=0, orthogonal relative to y, to be a Bochner–Krall orthogonal
polynomial system (BKOPS); that is, {Qn(x)}.n=0 are eigenfunctions of a finite
order linear differential operator of spectral type with polynomial coefficients:
LN[y](x)=;N

i=1 ai(x) y (i)(x)=ln y(x). In particular, when n is of order 0 as a
distribution, we find necessary and sufficient conditions for {Qn(x)}.n=0 to be
a BKOPS, which strongly support and clarify Magnus’ conjecture which states
that any BKOPS must be orthogonal relative to a classical moment functional plus
one or two point masses at the end point(s) of the interval of orthogonality. This
result explains not only why the Bessel-type orthogonal polynomials (found by
Hendriksen) cannot be a BKOPS but also explains the phenomena for infinite-order
differential equations (found by J. Koekoek and R. Koekoek), which have the
generalized Jacobi polynomials and the generalized Laguerre polynomials as eigen-
functions. © 2001 Academic Press

Key Words: differential equations; Bochner–Krall orthogonal polynomials;
Magnus’ conjecture.



1. INTRODUCTION

In this work, we are interested in an orthogonal polynomial system
(OPS) which satisfies a linear differential equation of spectral type,

LN[y](x)=C
N

i=1
ai(x) y (i)(x)=C

N

i=1
C
i

j=0
ai, jx jy (i)(x)=ln y(x),(1.1)

where ai, j are real constants and ln=a11n+· · ·+aNNn(n−1) · · · (n−N+1).
In 1929, Bochner [3] showed that there are essentially (up to a complex

linear change of variable) five polynomial sequences (namely, the four
classical orthogonal polynomials of Jacobi, Bessel, Laguerre, and Hermite,
and {xn}.n=0) that satisfy the differential equation (1.1) with N=2. Kwon
and Littlejohn [28] followed Bochner’s work by showing that, up to a real
change of variable, there are six distinct OPS’s (Jacobi, Bessel, Laguerre,
Hermite, twisted Jacobi, and twisted Hermite polynomials) that arise as
eigenfunctions of the differential equation (1.1) with N=2. Although
Bochner [3] did not discuss the orthogonality of the polynomial sequences
that he classified, the orthogonality of the Jacobi, Laguerre, and Hermite
polynomials was clearly understood. The complex orthogonality of the
Bessel polynomials was later observed and studied in detail by Krall and
Frink [23] (see also [6, 25, 37]). Generalizing Bochner’s classification
problem, H. L. Krall [21] found necessary and sufficient conditions for an
OPS to satisfy a differential equation (1.1) of arbitrary order, by which he
also classified [22] (up to a complex linear change of variable) all OPS’s
satisfying fourth order differential equations of the form (1.1). In addi-
tion to rediscovering four classical OPS’s of Jacobi, Bessel, Laguerre,
Hermite, he also found three new OPS’s satisfying fourth order equations.
A. M. Krall [19] called these three new OPS’s classical-type OPS’s since
they are orthogonal relative to moment functionals which are point mass
perturbations of classical moment functionals. Generalizing classical-type
OPS’s, Koornwinder [18] introduced the generalized Jacobi polynomials
{Pa, b, M, N

n (x)}.n=0, which are orthogonal on [−1, 1] relative to the classical
Jacobi weight plus two point masses at x=±1, given explicitly by

w (a, b, M, N)
j (x)=

C(a+b+2)
2a+b+1(a+1) C(b+1)

(1−x)a (1+x)b

+Md(x+1)+Nd(x−1),

where a > −1, b > −1, M \ 0, and N \ 0. As a limiting case, Koornwinder
also found the generalized Laguerre polynomials {La, Mn (x)}.n=0, which
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are orthogonal on [0,.) relative to the Laguerre weight plus a point mass
at x=0 defined by

w (a, M)
L (x)=

1
C(a+1)

xae−x+Md(x),

where M \ 0 and a > −1. Recently, J. Koekoek and R. Koekoek found
special types of infinite-order differential equations (see the Eqs. (4.17) and
(4.18)), which have the sequences {La, Mn (x)}.n=0 [16] and {Pa, b, M, N

n (x)}.n=0

[17] as eigenfunctions. These differential equations are, in general, of infi-
nite order; in fact, they are of finite order only when a or b is a non-nega-
tive integer or M=N=0; see also Zhedanov [38], who found necessary
conditions for {Pa, b, M, N

n (x)}.n=0 to satisfy a finite order differential equa-
tion (1.1).

In a series of papers [9–12], Grünbaum et al. extended Bochner’s work
further using Darboux transformations. In particular, they found in [12] a
tenth order differential equation (1.1) having generalized Laguerre poly-
nomials as solutions, which are orthogonal on [0,.) relative to

e−x+r1d(x)−r2dŒ(x).

Orthogonalizing moment functionals of all known OPS’s satisfying dif-
ferential equation (1.1) are classical moment functionals plus point mass(es)
at the end points of interval of the orthogonality of the corresponding
classical moment functionals (see [12, 16, 17, 19, 32]). In this respect,
Magnus [34] conjectured that if an OPS {Qn(x)}.n=0 satisfies the differen-
tial equation (1.1), then {Qn(x)}.n=0 must be orthogonal with respect to a
classical weight function w(x) plus point masses at the end points of the
support of w(x). We support Magnus’ conjecture by showing that if a
moment functional y of the form

y=s+n,

where s is a classical moment functional and n ( ] 0) is a distribution with
finite support, has an OPS {Qn(x)}.n=0 satisfying the differential equation
(1.1), then s must be a moment functional for Jacobi or Laguerre or
twisted Jacobi polynomials and supp(n) contains at most two points which
are determined by s (see Theorem 4.2). In particular, we find necessary and
sufficient conditions for an OPS relative to y :=s+Md(x−a)+Nd(x−b),
where s is a classical moment functional, to satisfy the differential equation
(1.1) (see Theorem 4.9), which completely explains the phenomenon of
infinite order differential equations (see Eqs. (4.17) and (4.18)), which have
{Pa, b, M, N

n (x)}.n=0 and {La, Mn (x)}.n=0 as eigenfunctions. Finally, we give a
new example of an OPS satisfying the equation (1.1) together with some
related conjectures.
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2. PRELIMINARIES

We let P be the space of all real polynomials in the single variable x and
denote the degree of p(x) ¥P by deg(p), with the convention that
deg(0)=−1. By a polynomial system (PS), we mean a sequence of poly-
nomials {fn(x)}.n=0 with deg(fn)=n for each n ¥N0. Note that a PS forms
a basis for the vector space P.

We call a linear functional s: PQ R a moment functional and, in distri-
butional style, we denote its action on a polynomial p(x) by Os, pP. For a
moment functional s, the numbers

sn :=Os, xnP (n ¥N0)

are called the moments of s. We say that a moment functional s is quasi-
definite (respectively, positive-definite) if its moments {sn}

.

n=0 satisfy the
Hamburger condition

Dn(s) :=det[si+j]
n
i, j=0 ] 0 (respectively, Dn(s) > 0)

for every n ¥N0. Any PS {f(x)}.n=0 determines a moment functional s
(uniquely up to a non-zero constant multiple), called a canonical moment
functional of {fn(x)}.n=0, by the conditions

Os, f0P ] 0 and Os, fnP=0, n \ 1.

Definition 2.1. A PS {Pn(x)}.n=0 is called an orthogonal polynomial
system (OPS) (respectively, a positive-definite OPS) if there is a moment
functional s satisfying

Os, PmPnP=Kndmn (m, n ¥N0),(2.1)

where {Kn} are non-zero (respectively, positive) real constants and dmn is
the Kronecker delta function. In this case, we say that {Pn(x)}.n=0 is an
OPS relative to s and call s an orthogonalizing moment functional of
{Pn(x)}.n=0.

It is immediate from (2.1) that, for any OPS {Pn(x)}.n=0, its orthogo-
nalizing moment functional s must be a canonical moment functional of
{Pn(x)}.n=0. Moreover, it is well known (see Chapter 1 in [4]) that a
moment functional s is quasi-definite if and only if there is an OPS
{Pn(x)}.n=0 relative to s; furthermore, each Pn(x) is uniquely determined up
to a non-zero constant multiple.
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Due to the representation theorems for the moment problem by Boas
[2] and Duran [5], any moment functional s has an integral representa-
tion of the form

Os, pP=F
.

−.
p(x) dm(x)=F

.

−.
p(x) f(x) dx (p ¥P),

where m is a finite, signed Borel measure on R and f(x) is a smooth,
rapidly decaying function in the Schwartz space S(R). Hence, for any OPS
{Pn(x)}.n=0, there is a distribution w(x) relative to which {Pn(x)}.n=0 is
orthogonal. In this case, we call w(x) a distributional orthogonalizing
weight for {Pn(x)}.n=0.

For a moment functional s and a polynomial p(x), we let sŒ (the deriva-
tive of s) and ps (the left multiplication of s by p(x)) be the moment
functionals defined by

OsŒ, fP :=−Os, fŒP,

and

Ops, fP :=Os, pfP

for f(x) ¥P. The following result is immediate from these definitions.

Lemma 2.1 [29]. For a moment functional s and a polynomial p(x), we
have:

(i) Leibniz’ rule: (p(x) s)Œ=pŒ(x) s+p(x) sŒ;
(ii) sŒ=0 if and only if s=0.

If s is quasi-definite, then

(iii) p(x) s=0 if and only if p(x)=0.

Definition 2.2 [35]. A moment functional s is semi-classical if:

(i) s is quasi-definite, and
(ii) there exist polynomials f(x) and k(x) such that (f, k) ]

(0, 0) and

(fs)Œ−ks=0.(2.2)

The quasi-definiteness of s implies deg(f) \ 0 and deg(k) \ 1.
For any semi-classical moment functional s, we call

s :=min{max(deg(f)−2, deg(k)−1)}

the class number of s, where the minimum is taken over all pairs of
(f, k) ] (0, 0) of polynomials satisfying (2.2).
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Lemma 2.2 [36]. Let s be a semi-classical moment functional with class
s satisfying (f(x) s)Œ=k(x) s. If s=max(deg(f)−2, deg(k)−1) and if s
also satisfies (f1(x) s)Œ=k1(x) s, then f(x) divides f1(x).

An OPS {Pn(x)}.n=0 is called a semi-classical OPS (SCOPS) (of class s)
if its canonical moment functional s is semi-classical (with class number s).
In particular, a SCOPS (respectively, semi-classical moment functional) of
class 0 is called a classical OPS (respectively, a classical moment func-
tional).

It is well known (see [27]) that an OPS {Pn(x)}.n=0 is a classical OPS if
and only if there are polynomials A(x) and B(x), independent of degree n,
with 0 [ deg(A) [ 2 and deg(B)=1 such that

A(x) P'n (x)+B(x) P −n(x)(2.3)

=(12 n(n−1) Aœ(x)+nBŒ(x)) Pn(x) (n ¥N).

Moreover, up to a real linear change of variable, there are only six classical
OPS’s ([28]):

(i) Jacobi polynomials {P (a, b)
n (x)}.n=0 satisfying

(1−x2) yœ(x)+[(b−a)−(a+b+2) x] yŒ(x)=−n(n+a+b+1) y(x)

(−a, −b and −(a+b+1) ¨N={1, 2, ...});
(ii) Bessel polynomials {B (a)

n (x)}.n=0 satisfying

x2yœ(x)+(ax+2) yŒ(x)=n(n+a−1) y(x) (−a+1 ¨N);

(iii) Laguerre polynomials {L (a)
n (x)}.n=0 satisfying

xyœ(x)+(a+1−x) yŒ(x)=−ny(x) (−a ¨N);

(iv) Hermite polynomials {Hn(x)}.n=0 satisfying

yœ(x)−2xyŒ(x)=−2ny(x);

(v) twisted Jacobi polynomials {P̌ (d, e)
n (x)}.n=0 satisfying

(x2+1) yœ(x)+(dx+e) yŒ(x)=n(n+d−1) y(x) (1−d ¨N);

(vi) twisted Hermite polynomials {Ȟn(x)}.n=0 satisfying

yœ(x)+2xyŒ(x)=2ny(x).
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Among the six classical OPS’s above, only the Jacobi polynomials
{P (a, b)

n (x)}.n=0 with a and b > −1, the Laguerre polynomials {Lan(x)}.n=0

with a > −1 and the Hermite polynomials {Hn(x)}.n=0 are positive-definite
OPS’s. We denote the orthogonalizing moment functionals of the Jacobi,
Bessel, Laguerre, Hermite, twisted Jacobi, and twisted Hermite polyno-
mials by, respectively,

s (a, b)
J , s (a)

B , s (a)
L , sH, s (d, e)

J̌
, and sȞ.

Later, we will make use of the following simple observation: if the differ-
ential equation (2.3) has a classical OPS {Pn(x)}.n=0 of solutions, then
B(x0) ] 0 for any complex number x0 where A(x0)=0.

3. BOCHNER–KRALL OPS’S

We call an OPS {Pn(x)}.n=0 a Bochner–Krall OPS (BKOPS) of order N
( \ 1) (and write {Pn} ¥ BKS(N); see [8]) if {Pn(x)}.n=0 satisfies a differ-
ential equation (1.1) of order N but does not satisfy any differential equa-
tion (1.1) of order < N. Necessary and sufficient conditions for an OPS to
be a BKOPS were found first by Krall [21], of which another simpler
proof can be found in [29].

Proposition 3.1 (see [20, 21, 29, 33]). Let {Pn(x)}.n=0 be an OPS
relative to s. Then the following statements are equivalent.

(i) {Pn(x)}.n=0 is a BKOPS satisfying the differential equation (1.1);
(ii) The moments {sn}

.

n=0 of s satisfy r :=[N+1
2 ] recurrence relations

Sk(m) := C
N

i=2k+1
C
i

j=0

1 i−k−1
k
2 P(m−2k−1, i−2k−1) ai, i− jsm−j

= 0

for k=0, 1, ..., r−1 andm=2k+1, 2k+2, ..., whereP(n, k)=n(n−1)(n−2)
· · · (n−k+1);

(iii) s satisfies r :=[N+1
2 ] functional equations:

Rk(s) := C
N−2k−1

i=0
(−1) i 1 i+k

k
2 (a2k+i+1s) (i)=0(3.1)

(k=0, 1, ..., r−1);
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(iv) sLN[ · ] is symmetric on polynomials in the sense that

OLn(f) s, kP=OLN(k) s, fP (f and k ¥P).

Furthermore, if any of the above equivalent conditions holds, then N=2r
must be even.

Proof. See Theorem 2.4 in [29]. L

Moreover, if the differential equation (1.1) has an OPS {Pn(x)}.n=0 as
eigenfunctions, then the differential operator LN[ · ] must be Lagrangian
symmetrizable (see [31]). However, in the case of Sobolev orthogonality,
this result is not necessarily the case (see [7, 14]).

The equivalence of the statements (i) and (ii) was first shown by
H. L. Krall [19] and the equivalence of (ii) and (iv) was established by
Kwon et al. [29]. We call the r functional equations in (3.1) the moment
equations for the differential equation (1.1). In particular, any BKOPS is a
SCOPS and so deg(a2r−1) \ 1 since

Rr−1[s]=r(a2rs)Œ− a2r−1s=0.

Proposition 3.2. If the differential equation (1.1) has an OPS
{Pn(x)}.n=0 as solutions, then the moment equations Rk(s)=0 (0 [k [ r−1)
have a unique non-trivial solution s, up to a constant multiple, and s must be
quasi-definite.

Proof. See Theorem 3.4 in [26]. L

By iteration, any BKOPS of order 2r satisfies differential equations of
order 2r, 4r, ... . However, we now show that for a BKOPS {Pn(x)}.n=0 of
order 2r, the 2rth-order differential equation L2r[y]=ln y of the type (1.1)
having {Pn(x)}.n=0 as solutions is unique up to a non-zero constant
multiple.

Proposition 3.3. If the PS {Pn(x)}.n=0 satisfies the two differential
equations

LN[y]=C
N

i=1
ai(x) y (i)(x)=ln y(x) with aN – 0

and

L̃M[y]=C
N

i=1
mi(x) y (i)(x)=mn y(x) with mM – 0
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then aMN (x)=CmN
M(x) for some constant C ] 0. Thus for any BKOPS

{Pn(x)}.n=0 of order 2r, there is a unique (up to a non-zero constant multiple)
2rth-order differential equation having {Pn(x)}.n=0 as solutions.

Proof. The PS {Pn(x)}.n=0 also satisfies (LNL̃M −L̃MLN)[Pn](x)=0
(n ¥N0) so that LNL̃M=L̃MLN. Now, with D j=d j/dx j for any j ¥N, we
see that

LNL̃M[ · ]=aNmMDN+M+(NaNm −

M+aN−1mM+aNmM−1)

×DN+M−1+·· · ,

L̃MLN[ · ]=mMaNDN+M+(MmMa
−

N+mM−1aN+mMaN−1)

×DN+M−1+·· · ;

hence, NaN(x) m −

M(x)=MmMa
−

N(x). Consequently,

d
dx
1mN

M(x)
a
M
N (x)
2=aM−1

N (x) mN−1
M (x)

MmMa
−

N(x)−NaN(x) m −

M(x)
a
2M
N (x)

=0.

Hence aMN (x)=CmN
M(x) for some constant C ] 0. Now, the second claim

follows immediately from the first. L

4. POINT MASS PERTURBATIONS OF CLASSICAL
MOMENT FUNCTIONALS

Orthogonalizing moment functionals of all known BKOPS’s have at
least one important point in common: they are one or two point mass per-
turbations of classical moment functionals. In this respect, A. Magnus [34]
conjectured that B …K, where B is the class of BKOPS’s and K is the
class of Koornwinder polynomials [18]; that is, BKOPS’s are OPS’s which
are orthogonal relative to classical moment functionals plus point mass(es)
at the end points of the interval of orthogonality. Conversely, we consider
the problem: When is an OPS in the Koornwinder class a BKOPS? More
general than Magnus’ conjecture, we first consider a point mass perturba-
tion y :=s+n of a classical moment functional s at an arbitrary number of
points in the complex field C, where

n= C
m

k=1
C
mk

j=0
ck, jd (j)(x−xk)(4.1)
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is a distribution with finite support {xk}
m
k=1 in C and ck, j ¥ C. We also

assume that

n=n̄ := C
m

k=1
C
mk

j=0
c̄k, jd (j)(x− x̄k)

so that n defines a real moment functional.

Lemma 4.1. Let s be a quasi-definite moment functional. If for some
polynomial p(x), p(x) s=n, where n is as in (4.1), then p(x) — 0 and n — 0.

Proof. Let f(x)=<m
k=1(x−xk)mk+1. Then f(x) n=0 so that f(x) p(x) s

=f(x) n=0. Hence, by Lemma 2.1, f(x) p(x) — 0 so that p(x) — 0 and
n — 0. L

For the remainder of this paper, we shall assume that s is a classical
moment functional satisfying

(A(x) s)Œ=B(x) s,

where 0 [ deg(A) [ 2 and deg(B)=1. Then, by Proposition 3.1 with
N=2, the OPS {Pn(x)}.n=0 relative to s satisfies the second-order differ-
ential equation

A(x) yœ(x)+B(x) yŒ(x)=ln y(x).

Without loss of generality, we shall also assume that {Pn(x)}.n=0 is the
monic classical OPS relative to s. We are now in position to state one of
our main results.

Theorem 4.2. Let y :=s+n be a point mass perturbation of s with n
( ] 0) as in (4.1). If y is also quasi-definite and gives rise to a BKOPS
{Qn(x)}.n=0 or order [ 2r satisfying

L2r[y](x)=C
2r

i=1
ai(x) y (i)(x)=ln y(x),(4.2)

then:

(i) supp(n) ı {x ¥ C | A(x)=0} so that m [ 2;
(ii) A(x) divides a2r(x) and

ra2r(x)(B(x)−AŒ(x))=A(x)(a2r−1(x)−ra −2r(x));(4.3)

(iii) Rr−1[s]=0;
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(iv) if x0 ¥ supp(n) is a zero of order q ( \ 1) of a2r(x), then x0 is a
zero of order q−1 of a2r−1(x);

(v) the moment functional s must be s (a, b)
J or s (a)

L or s (d, e)
J̌

; further-
more,

(a) if s=s (a, b)
J and 1 ¥ supp(n) (respectively, −1 ¥ supp(n)), then a

(respectively, b) must be a non-negative integer;

(b) if s=s (a)
L , then a must be a non-negative integer;

(c) if s=s (d, e)
J̌

, then e=0 and d=2k for some integer k \ 1.

In particular, Theorem 4.2 shows that in order to obtain a BKOPS by
adding point masses to a classical moment functional s, we can add only
one or two mass points, which must be roots of A(x).

In order to prove Theorem 4.2, we need the following facts for classical
moment functionals, which are of interest in their own right.

Lemma 4.3. For any classical moment functional s and any x0 ¥ C, we
have

lim
xQ x0

(x−x0)
B(x)−AŒ(x)

A(x)
] −1, −2, ...,(4.4)

and

An(x) s (n)=fn(x) s (n ¥N0),(4.5)

where fn(x) is a polynomial of degree [ n.

Proof. If A(x0) ] 0, then the left hand side of (4.4) is clearly equal to 0.
If A(x0)=0, then (4.4) can be proved, case by case, for each of the six
classical moment functionals. For n=0, (4.5) holds with f0(x)=1. Assume
that for an integer a \ 0 there are polynomials f0(x), f1(x), ..., fa(x) with
deg(fi) [ i (0 [ i [ a) for which (4.5) holds for n=0, 1, ..., a. Then

Aa+1(x) s (a)=A(x) fa(x) s.(4.6)

Differentiating both sides of (4.6) gives

(a+1) AŒ(x) Aa(x) s (a)+Aa+1(x) s (a+1)=(f −a(x) A(x)+fa(x) B(x)) s,

so that, using Aa(x) s (a)=fa(x) s,

Aa+1(x) s (a+1)={f −a(x) A(x)+fa(x)(B(x)−(a+1) AŒ(x))} s

=fa+1(x) s,
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where fa+1(x)=f −a(x) A(x)+fa(x)(B(x)−(a+1) AŒ(x)) is of degree [ a+1.
This completes the proof. L

Note that, for each n \ 0, the polynomial fn(x) in (4.5) satisfies

fn+1(x)=A(x) f −n(x)+(B(x)−(n+1) AŒ(x)) fn(x) (n ¥N0),

so that if A(x0)=0, then

fn+1(x0)=(B(x0)−(n+1) AŒ(x0)) fn(x0) (n ¥N0).

In particular, for the Jacobi, Bessel, Laguerre, and twisted Jacobi polyno-
mials, routine calculations show that

˛
fn(1) ] 0 (n ¥N0) if s=s (a, b)

J and a ¨N0;

fn(−1) ] 0 (n ¥N0) if s=s (a, b)
J and b ¨N0;

fn(0) ] 0(n ¥N0) if s=s (a)
B ;

fn(0) ] 0(n ¥N0) if s=s (a)
L and a ¨N0;

fn(± i) ] 0(n ¥N0) if s=s (d, e)
J̌

and e ] 0 or 1
2 (d−2) ¨N0.

(4.7)

Proposition 4.4. Assume that s also satisfies (f(x) s)Œ=k(x) s for
some polynomials f(x) – 0 and k(x). Let x0 ¥ C be a zero of order m ( \ 1)
of f(x). Then:

(i) A(x) divides f(x);
(ii) if either s ] s (a)

B or s=s (a)
B and A(x0) ] 0, then x0 is a zero of

order m−1 of k(x);
(iii) if s=s (a)

B and A(x0)=0, then x0 is a zero of order m−2 of k(x).

Proof. Part (i) follows from Lemma 2.2. Since (A(x) s)Œ=B(x) s and
(f(x) s)Œ=k(x) s, we have by Lemma 2.2

B(x)−AŒ(x)
A(x)

=
k(x)−fŒ(x)
f(x)

.(4.8)

Write f(x)=(x−x0)m f̃(x), where f̃(x0) ] 0. Then, by (4.8), we have

k(x)=(x−x0)m B(x)−AŒ(x)
A(x)

f̃(x)+(x−x0)m f̃Œ(x)(4.9))

+m(x−x0)m−1 f̃(x).
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If m=1, then we have from (4.9) and Lemma 4.3 that

k(x0)=f̃(x0) 1 lim
xQ x0

(x−x0)
B(x)−AŒ(x)

A(x)
+12 ] 0.

If m \ 2, then k(x)=(x−x0)m−2 k̃(x), where

k̃(x)=(x−x0)2 1B(x)−AŒ(x)
A(x)

f̃(x)+f̃Œ(x)2+m(x−x0) f̃(x)

is real analytic. Hence x0 is a zero of order at least m−2 of k(x). If either
s ] s (a)

B or s=s (a)
B and A(x0) ] 0, then x0 is a zero of A(x) of order at

most 1. Hence k(x)=(x−x0)m−1 (k̃(x)/(x−x0)) and, from Lemma 4.3,

lim
xQ x0

k̃(x)
x−x0

= lim
xQ x0

f̃(x) 1 (x−x0)
B(x)−AŒ(x)

A(x)
+m2 ] 0

so that x0 is a zero of order m−1 of k(x). If s=s (a)
B and A(x0)=0, then

AŒ(x0)=0 and B(x0)−AŒ(x0) ] 0; hence

k̃(x0)= lim
xQ x0

(x−x0)2 B(x)−AŒ(x)
A(x)

f̃(x)=
2(B(x0)−AŒ(x0))

Aœ(x0)
f̃(x0) ] 0;

that is, x0 is a zero of order m−2 of k(x). L

Proposition 4.5. If there are polynomials pi(x) (0 [ i [ n) such that

n := C
n

k=0
(pk(x) s) (k)

is a distribution with finite support, then either n=0 or A(x)=0 for all
x ¥ supp(n). Consequently, supp(n) contains at most two points. Moreover,

(i) if s=s (a, b)
J and 1 ¥ supp(n) (respectively, −1 ¥ supp(n)), then a

(respectively, b) must be a non-negative integer;

(ii) if s=s (a)
L and 0 ¥ supp(n), then a must be a non-negative integer;

(iii) if s=s (a)
B or sH or sȞ, then n=0;

(iv) if s=s (d, e)
J̌

and n ] 0, then e=0 and d=2k for some integer
k \ 1.

Proof. Assume supp(n)={xk}
m
k=1 and

n= C
n

k=0
(pk(x) s) (k)= C

m

k=1
C
mk

j=0
ck, jd (j)(x−xk) ] 0.
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Assume A(x1) ] 0. Then for the polynomial p(x) :=An(x) <m
k=2(x−xk)mk+1,

we have by (4.5),

p(x) n=p(x) C
n

k=0
(pk(x) s) (k)=k(x) s,

for some polynomial k(x). On the other hand, we also have

p(x) n=p(x) C
m

k=1
C
mk

j=0
ck, jd (j)(x−xk)=C

m1

j=0
c1, jp(x) d (j)(x−x1)

=C
m1

j=0
c1, j C

j

i=0
(−1) i 1 j

i
2 p (i)(xi) d (j− i)(x−x1)

=C
m1

i=0
C
m1

j=i
c1, j(−1) 1 j

j− i
2 p (j− i)(x1) d (i)(x−x1).

Hence, by Lemma 4.1, k(x)=0 and

C
m1

j=i
c1, j(−1) j− i 1 j

j− i
2 p (j− i)(x1)=0 (0 [ i [ m1)

so that c1, m1
=c1, m1 −1=·· ·=c1, 0=0 since p(x1) ] 0. Then x1 ¨ supp(n),

which is a contradiction. This proves the first assertion.
Assume that x0 is a zero of A(x) such that fn(x0) ] 0 for each n ¥N0 for

any polynomial fn(x) in (4.5). Then we claim that x0 ¨ supp(n). For n=0,
p0(x) — 0 and n — 0 by Lemma 4.1. Hence x0 ¨ supp(n). We assume that the
claim holds for n=0, 1, 2, ..., a. Let n=;a+1

k=0 (pk(x) s) (k) and pa+1(x) – 0.
Then, by the first assertion, supp(n) ı {x ¥ C | A(x)=0}. Let pa+1(x)=
q(x) A(x)+r(x), where deg(r) < deg(A). Choose an integer m̃ \ 0 so that
Aa+m̃+1(x) n=0. Then

0=Aa+m̃+1(x) n=Aa+m̃+1(x) 1 (pa+1(x) s) (a+1)+ C
a

k=0
(pk(x) s) (k)2

=Aa+m̃+1(x) 3pa+1(x) s (l+1)+ C
a

k=0

11a+1
k
2 p (a−k+1)

a+1 (x) s (k)

+(pk(x) s) (k)24

=A m̃(x)(pa+1(x) fa+1(x)+A(x) p(x)) s

202 KWON, LITTLEJOHN, AND YOON



for some polynomial p(x) by Lemma 4.3. Hence, by Lemma 2.1(iii),

pa+1(x) fa+1(x)+A(x) p(x)=0;

that is,

A(x)(q(x) fa+1(x)+p(x))=−r(x) fa+1(x).(4.10)

Since A(x0)=0 and fa+1(x0) ] 0, we see that r(x0)=0; hence either
r(x) — 0 or deg(r)=1. If r(x) — 0, then

n= C
a+1

k=0
(pk(x) s) (k)=(q(x) A(x) s) (a+1)+ C

a

k=0
(pk(x) s) (k)

=(qŒ(x) A(x) s) (a)+(q(x) B(x) s) (a)+ C
a

k=0
(pk(x) s) (k)

so that x0 ¨ supp(n) by our induction hypothesis. If deg(r)=1, then
A(x)=r(x) s(x) where deg(s)=1. Since fa+1(x0) ] 0, we see that s(x0) ] 0
by (4.10). Then

s(x) n=s(x) C
a+1

k=0
(pk(x) s) (k)=s(x) 3(pa+1(x) s) (a+1)+ C

a

k=0
(pk(x) s) (k)4

=s(x){(A(x) q(x) s) (a+1)+r(x) s (a+1)+(a+1) rŒ(x) s (a)

+ C
a

k=0
(pk(x) s) (k)4

=s(x){((qŒ(x) A(x)+q(x) B(x)+(a+1) rŒ(x)) s) (a)

+ C
a

k=0
(pk(x) s) (k)4+A(x) s (a+1).

Since

A(x) s (a+1)=(A(x) s) (a+1)−(a+1) AŒ(x) s (a)−1a+1
2
2 Aœ(x) s (a−1)

=(B(x) s) (a)−(a+1) AŒ(x) s (a)−1a+1
2
2 Aœ(x) s (a−1),

we have

s(x) n= C
a

k=0
(p̃k(x) s) (k)
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for some polynomials p̃k(x). By our induction hypothesis, x0 ¨ supp(s(x) n) so
that x0 ¨ supp(n) since s(x0) ] 0. Hence, by (4.7), the proof is complete. L

Proposition 4.6. If y :=s+n satisfies (fy)Œ=ky for some polynomials
f(x) and k(x), then A(x) divides f(x) and

f(x)(B(x)−AŒ(x))=A(x)(k(x)−fŒ(x)).(4.11)

Proof. Since

(fy)Œ−ky=fsŒ+(fŒ−k) s+(fn)Œ−kn=0,

we see that

fAsŒ+A(fŒ−k) s=[f(B−AŒ)+A(fŒ−k)] s=Akn−A(fn)Œ;

hence (4.11) follows from Lemma 4.1. Let x0 ¥ C be any zero of A(x). If
B(x0)−AŒ(x0) ] 0, then f(x0)=0 by (4.11). If B(x0)−AŒ(x0)=0, then
we consider the following two cases separately: B(x)−AŒ(x) – 0 or
B(x)−AŒ(x) — 0. Assume first that B(x0)−AŒ(x)=0 and B(x)−AŒ(x) – 0.
Then B(x)−AŒ(x)=a(x−x0) for some a ] 0. Set

f(x)=q(x) A(x)+r(x) (deg(r) < deg(A)).

Then, by (4.11), we have

ar(x)(x−x0)=A(x)[q(x)(AŒ(x)−B(x))+k(x)−fŒ(x)]

so that q(x)(AŒ(x)−B(x))+k(x)−fŒ(x)=b, for some constant b. Set
A(x)=(x−x0) Ã(x). Then r(x)=cÃ(x), where c=b/a and so (As)Œ=Bs
becomes (x−x0)(ÃsŒ−as)=0. Hence

Ã(x) sŒ=as+ld(x−x0),

for some constant l ] 0. Hence

(fy)Œ−ky=(qŒA+qB+rŒ−k+ac) s+cld(x−x0)+(fn)Œ−kn=0.

Then, by Lemma 4.1, qŒ(x) A(x)+q(x) B(x)+rŒ(x)−k(x)+ac=0 and

cld(x−x0)+(fn)Œ−kn=0.(4.12)

Let

n= C
m

k=1
C
mk

j=0
ck, jd (j)(x−xk) (ck, mk

] 0).
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If x0 ¨ {xk}
m
k=1, then cl=0 by (4.12) so that c=0 and r(x)=0. Hence

f(xk)=f(x0)=0. If x0 ¥ {xk}
m
k=1, then x0=xk for some k so that

cld(x−xk)+f(x) C
mk

j=0
ck, jd (j+1)(x−xk)

+(fŒ(x)−k(x)) C
mk

j=0
ck, jd (j)(x−xk)

=f(xk) ck, mk
d (mk+1)(x−xk)+C

mk

j=0
dk, jd

(j)(x−xk)=0

by (4.12). Hence f(xk)=f(x0)=0. Finally, assume that B(x)−AŒ(x) — 0.
Then either s=s (0, 0)

J or s=s (2, 0)
J̌

. If s=s (0, 0)
J , then (1−x2) sŒ=0 and

hence

sŒ=d(x+1)−d(x−1)

(assuming Os, 1P=2). Hence k(x)−fŒ(x) — 0 by (4.11) and so

(fy)Œ−ky=fsŒ+(fn)Œ−kn

=f(−1) d(x+1)−f(1) d(x−1)+(fn)Œ−kn=0.

Then f(−1)=f(1)=0 by the same reasoning as above. If s=s (2, 0)
J̌

, then
(1+x2) sŒ=0 so that (again, assuming Os, 1P=2),

sŒ=id(x−i)−id(x+1),

where i=`−1 . Similarly, as for s (0, 0)
J , we have f(−i)=f(i)=0. In all

cases, we have shown that f(x0)=0 for any root x0 of A(x). Hence A(x)
divides f(x). L

We now give a proof of Theorem 4.2:

Proof. Let n1(x) be the restriction of n(x) on {x ¥ C |A(x)=0}. Then
we can decompose n(x) as

v(x)=n1(x)+n2(x).

By Proposition 3.1, y satisfies the r moment equations

0=Rk(y)= C
2r−2k−1

i=0
(−1) i 1 i+k

k
2 (a2k+i+1(x) s) (i)

+ C
2r−2k−1

i=0
(−1) i 1 i+k

k
2 (a2k+i+1(x) n1) (i)

+ C
2r−2k−1

i=0
(−1) i 1 i+k

k
2 (a2k+i+1(x) n2) (i)
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for k=0, 1, ..., r−1. Let ỹ :=s+n1. Then, by the first part of Proposi-
tion 4.5, the last sum Rk(n2) must be zero and so ỹ also satisfies the r
moment equations

Rk(ỹ)=0

for k=0, 1, ..., r−1. By Proposition 3.2, y=ỹ; that is, n2=0. Hence,
part (i) of the theorem is proved. Part (v) follows from the second part of
Proposition 4.5, while parts (ii) and (iv) follow from Proposition 4.6 and
Proposition 4.4, respectively. Finally, to prove (iii), set a2r(x)=q(x) A(x).
By (4.3),

a2r−1(x)=r(q(x) B(x)+qŒ(x) A(x))

so that Rr−1(s)=r(q(x) A(x) s)Œ− a2r−1(x) s=0. L

As a special case of Theorem 4.2, we have:

Theorem 4.7. Let y=s+ld (m)(x−a)+md (n)(x−b), where a ] b and m,
n ¥N0. Assume that y is quasi-definite and gives rise to a BKOPS
{Qn(x)}.n=0 satisfying the differential equation (4.2). If l ] 0, then a2r(x)
(respectively, a2r−1(x)) vanishes of order at least m+2 (respectively, at least
m+1) at a. If m ] 0, then a2r(x) (respectively, a2r−1(x)) vanishes of order at
least n+2 (respectively, at least n+1) at b.

Proof. We assume l ] 0. The case for m ] 0 can be proved in a similar
way. By Theorem 4.2, Rr−1[y]=Rr−1[s]=0 so that

Rr−1[ld (m)(x−a)+md (n)(x−b)]=0.

Hence

0=Rr−1[d (m)(x−a)]

=ra2r(x) d (m+1)(x−a)+(ra −2r(x)− a2r−1(x)) d (m)(x−a)

=ra2r(a) d (m+1)(x−a)+(−1)m+1
a
(m)
2r−1(a) d(x−a)− C

m

j=1
(−1)m+j

×3r 1 m
j−1
2 a (m+1−j)

2r (a)+1m
j
2 a (m−j)

2r−1 (a)4 d (j)(x−a).
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Hence a2r(a)=a (m)
2r−1(a)=0 and

r 1 m
j−1
2 a (m+1−j)

2r (a)+1m
j
2 a (m−j)

2r−1 (a)=0 (1 [ j [ m).

That is, a2r(a)=a (m)
2r−1(a)=0 and

r(m−j+1) a (j)2r (a)+ja (j−1)
2r−1 (a)=0 (1 [ j [ m).(4.13)

On the other hand, by Theorem 4.2, A(a)=a2r(a)=0. Let q ( \ 1) be the
order of zero of x=a for a2r(x). Then, by Theorem 4.2, a2r−1(x) has x=a
as a zero of order q−1. Hence

a2r(x)=(x−a)q
ã2r(x), ã2r(a)=

1
q!
a
(q)
2r (a) ] 0;

a2r−1(x)=(x−a)q−1
ã2r−1(x), ã2r−1(a)=

1
(q−1)!

a
(q−1)
2r−1 (a) ] 0.

Then, by (4.3),

B(x)−AŒ(x)
A(x)

=
ã2r−1(x)−rqã2r(x)

r(x−a) ã2r(x)
−
ã
−

2r(x)

ã2r(x)
,

so that

lim
xQ a

(x−a)
B(x)−AŒ(x)

A(x)
=

q
r
a
(q−1)
2r−1 (a)−ra (q)2r (a)
a
(q)
2r (a)

.(4.14)

If 1 [ q [ m+1, then by (4.13) and (4.14)

lim
xQ a

(x−a)
B(x)−AŒ(x)

A(x)
=−(m+1),

which contradicts Lemma 4.3. Hence q \ m+2 and the conclusion follows
from Theorem 4.2 (iv). L

In particular, consider

y :=s+Md(x−a)+Nd(x−b),(4.15)
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where a ] b and s is a classical moment functional satisfying (A(x) s)Œ
=B(x) s with 0 [ deg(A) [ 2 and deg(B)=1. Then, the moment func-
tional y in (4.15) is quasi-definite if and only if

dn :=:11+MKn(a, a)
MKn(a, b)

NKn(a, b)
1+NKn(b, b)

2: ] 0 (n ¥N0),(4.16)

where Kn(x, y) :=;n
k=0 (Pk(x) Pk(y)/Os, P2

kP) is the kernel polynomial of
the monic classical OPS {Pn(x)}.n=0 relative to s (see Theorem 3.1 in [30]).
In this case, y is also a semi-classical moment functional (see Theorem 5.2
in [30]).

From Theorem 4.2 and Theorem 4.7, we have

Corollary 4.8. If y in (4.15), with M ] 0, gives rise to a BKOPS
{Qn(x)}.n=0 satisfying the differential equation (4.2), then s must be s (a, b)

J or
s (a)

L or s (d, 0)
J̌

, where a or b is a non-negative integer, d=2k for some integer
k \ 1, and:

(i) A(a)=NA(b)=0;
(ii) a2r(a)=a −2r(a)=a2r−1(a)=Na2r(b)=Na −2r(b)=Na2r−1(b)=0;
(iii) a2r(x)=A(x) f(x) and a2r−1(x)=r(f(x) B(x)+fŒ(x) A(x)) for

some polynomial f(x) with f(a)=Nf(b)=0;
(iv) Rr−1[s]=0.

In particular, Corollary 4.8 explains why the Bessel type orthogonal
polynomials found by Hendriksen [13] cannot satisfy a finite order differ-
ential equation of the form (1.1).

We now consider in detail the three cases for the moment function-
als s=s (a, b)

J , s (a)
L and s (d, e)

J̌
. Let {Pa, b, M, N

n (x)}.n=0, {La, Mn (x)}.n=0, and
{P̌d, e, M, M̄

n (x)}.n=0 be the Jacobi type, the Laguerre type, and the twisted
Jacobi type polynomials, which are orthogonal relative, respectively, to the
weight distributions

yJ=s (a, b)
J +Md(x+1)+Nd(x−1) (M, N ¥ R),

yL=s (a)
L +Md(x) (M ¥ R),

yJ̌=s (d, e)
J̌

+Md(x+i)+M̄d(x−i) (M ¥ C).

We normalize s (a, b)
J , s (a)

L , and s (d, e)
J̌

so that Os (a, b)
J , 1P=Os (a)

L , 1P=
Os (d, e)

J̌
, 1P=1.
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For any PS {Qn(x)}.n=0, there are infinitely many differential equations
of infinite order with polynomial coefficients,

L[y](x)=C
.

i=1
ai(x) y (i)(x)=ln y(x)

which have {Qn(x)}.n=0 as eigenfunctions. Here ai(x)=; i
j=0 aijx

j and

ln=a11n+a22n(n−1)+· · ·+annn!.

To be precise, Krall and Sheffer [24] (see also [1, 15]) showed that for any
sequence of real numbers {ln}

.

n=0, with l0=0 and lm ] ln for m ] n, there
is a unique sequence of polynomials {ai(x)}.i=1 such that L[Qn]=lnQn for
each n ¥N0. In this respect, J. Koekoek and R. Koekoek (see [17]) found
infinite-order differential equations for the generalized Jacobi polynomials
{Pa, b, M, N

n (x)}.n=0 and the generalized Laguerre polynomials {La, Mn (x)}.n=0

(see [16]). To summarize their work, they showed that the generalized
Jacobi polynomials {Pa, b, M, N

n (x)}.n=0 satisfy a unique differential equation
of the form

0=M C
.

i=0
ai(x) y (i)+N C

.

i=0
bi(x) y (i)+MN C

.

i=0
ci(x) y (i)(4.17)

+(1−x2) yœ+(b−a−(a+b+2) x) yŒ+n(n+a+b+1) y,

where ai(x), bi(x), ci(x) are polynomials of degree [ i and are independent
of n for i \ 1. Moreover, the order OJ(a, b) of this differential operator is
given by

OJ(a, b)=˛
. if M > 0 and b ¨ N0 or N > 0 and a ¨ N0

2 if M=N=0

2a+4 if M=0, N > 0, and a ¥ N0

2b+4 if M > 0, N=0, and b ¥ N0

2a+2b+6 if M > 0, N > 0, and a and b ¥ N0.

Here, in the latter four cases, the leading coefficient is given by

˛
1−x2 if M=N=0

−1
(b+1)a+1

(x2−1)a+2

(a+2)!
if M=0, N > 0, and a ¥ N0

−1
(a+1)b+1

(x2−1)b+2

(b+2)!
if M > 0, N=0, and b ¥ N0

−(a+b+2)
(a+1)(b+1)

(x2−1)a+b+3

(a+b+1)! (a+b+3)!
if M > 0, N > 0, and a, b ¥ N0.
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The generalized Laguerre polynomials {La, Mn (x)}.n=0 satisfy a unique
differential equation of the form

M C
.

i=0
ai(x) y (i)+xyœ+(a+1−x) yŒ+ny=0,(4.18)

where each ai(x) is a polynomial of degree [ i and is independent of n for
i \ 1. Moreover, the order OL(a) of the differential operator in (4.18) is

OL(a)=˛
. if M > 0 and a ¨ N0

2 if M=0

2a+4 if M > 0 and a ¥ N0,

and in the latter two cases, the leading coefficient is

˛x if M=0

(−1)a+1

(a+2)!
xa+2 if M > 0 and a ¥ N0.

Following Koornwinder [18], who first introduced the generalized
Jacobi polynomials and the generalized Laguerre polynomials, J. Koekoek
and R. Koekoek assumed a, b > −1 and M, N \ 0 in [16, 17]; under these
assumptions, {Pa, b, M, N

n (x)}.n=0 and {La, Mn (x)}.n=0 are positive-definite
OPS’s. However, we can relax these restrictions on the parameters a, b, M,
N by the condition (4.16) to obtain quasi-definite OPS’s {Pa, b, M, N

n (x)}.n=0

and {La, Mn (x)}.n=0, which still satisfy the differential equation (4.17) and
(4.18), respectively.

Theorem 4.9. Let {Qn(x)}.n=0 be an OPS relative to the moment func-
tional y defined in (4.15). Then {Qn(x)}.n=0 is a BKOPS if and only if

(i) M=N=0 or

(ii) y=yJ with a ¥N0 when N ] 0 and b ¥N0 when M ] 0 or

(iii) y=yL with a ¥N0 or

(iv) y=yJ̌ with d=2k (k a positive integer) and e=0.

Proof. The necessity follows by Theorem 4.2(v). The sufficiency of the
condition (i) is trivial. The sufficiency of conditions (ii) and (iii) follows
from the fact that the differential equations (4.17) and (4.18) are of finite
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order under the given conditions. Finally, consider the OPS {Qn(x)}.n=0

:={P̌2k, 0, M, M̄
n (x)}.n=0, where k is a positive integer. Set

Pn(x) :=i−nQn(ix) (i=`−1 ; n ¥N0).

Then {Pn(x)}.n=0 is an OPS relative to the moment functional

s̃+Md(x+1)+M̄d(x−1),

where s̃ is the moment functional defined by Os̃, p(x)P=Os (2k, 0)
J̌

, p(−ix)P
for any polynomial p(x). Since s :=s (2k, 0)

J̌
satisfies ((1+x2) s)Œ=2kxs, s̃

satisfies the functional equation ((1−x2) s̃)Œ=−2kxs̃ so that s̃=s (k−1, k−1)
J

is the Jacobi moment functional. Hence, {Pn(x)}.n=0 satisfies the differen-
tial equation (4.17) (see Eqs. (14)–(16) in [17]):

0=M C
2k+2

j=0
aj(x) y (j)+M̄ C

2k+2

j=0
bj(x) y (j)+|M|2 C

4k+2

j=0
cj(x) y (j)

+(1−x2) yœ−2kxyŒ+n(n+2k−1) y.

Hence, {Qn(x)}.n=0 is a BKOPS satisfying the differential equation

0=M C
2k+2

j=0
i jaj(−ix) y (j)+M̄ C

2k+2

j=0
i jbj(−ix) y (j)(4.19)

+|M|2 C
4k+2

j=0
i jcj(−ix) y (j)

The differential equation (4.19) has real polynomials as coefficients since
we have (see Eqs. (7)–(11) in [17]):

aj(x)=C
j−1

a=0
(−1)a+1 aj, a(x+1)a+1 (j \ 1)

bj(x)=(−1) j C
j−1

a=0
aj, a(x−1)a+1 (j \ 1)

c1(x)=0 and cj(x)=c(1)
j (x)+c(2)

j (x) (j \ 2),

where

c (1)
j (x)=(x2−1) C

j−2

a=0
(−1)a+1 cj, a(x+1)a+1

c (2)
j (x)=(−1) j (x2−1) C

j−2

a=0
cj, a(x−1)a+1,

and where aj, a and cj, a are real constants independent of M. L
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Note that Theorem 4.9, together with Theorem 4.2, completely charac-
terize BKOPS’s which are orthogonal relative to y :=s+n, where s is a
classical moment functional and n is a distribution of order 0 with finite
support.

Example 4.1. In 1982, Littlejohn [32] found a BKOPS of order 6,
called the Krall polynomials {Kn(x)}.n=0={Kn(A, B; x)}.n=0, which are
orthogonal relative to

y=s (0, 0)
J +

1
A
d(x+1)+

1
B
d(x−1) (A, B ¥ R0{0})

and satisfy the sixth-order differential equation

L6[y](x)=(x2−1)3 y (6)(x)+18x(x2−1)2 y (5)(x)

+{3(A+B+32) x4−6(A+B+22) x2+3(A+B+12)} y (4)(x)

×24(A+B+7)(x3−x) y (3)(x)+{(12AB+42(A+B)+72) x2

+12(B−A) x−(12AB+30(A+B)+72)} yœ(x)

+12{(2AB+A+B) x+B−A} yŒ(x)

=ln y(x).

Moreover, these polynomials are explicitly given by

Kn(x)= C
[n/2]

j=0

(−1) j (2n−j)! (n2−n+1+B+4j) xn−2j

2n+1(n−j)! j!(n−2j)!

− C
[n/2]

j=0

(−1) j (2n−2j)! (A−B)2 xn−2j

2n+1(n−j)! j!(n−2j)! (n2+n+A+B)

+ C
[n−1/2]

j=0

(−1) j (2n−2j−1)! (B−A) xn−2j−1

2n−1(n−j−1)! j!(n−2j−1)! (n2+n+A+B)

and satisfy the three-term recurrence relation

Kn(x)=
(2n−1) A(n) B(n−1)

nB(n) A(n−1)
xKn−1(x)(4.20)

+
(2n−1)(2B−2A) C(n) B(n−1)

nB(n)[A(n−1)]2 Kn−1(x)

−
(n−1) B(n−2)[A(n)]2

nB(n)[A(n−1)]2 Kn−2(x),
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where

A(n)=n4+(2A+2B−1) n2+4AB

B(n)=n2+n+A+B

C(n)=−3n4+6n3−(2A+2B+3) n2+2(A+B) n+4AB.

Define

Ǩn(x)=i−nKn(A+iB, A−iB; ix) (n ¥N0, A, B ¥ R).

Then, {Ǩn(x)}.n=0 is a real PS satisfying the three-term recurrence relation
(4.20) where Kn(x), A(n), B(n), and C(n) are replaced by, respectively,
Ǩn(x) and

Ǎ(n)=n4+(4A−1) n2+4(A2+B2)

B̌(n)=n2+n+2A

Č(n)=−3n4+6n3−(4A+3) n2+4An+4(A2+B2).

Hence, if Ǎ(n) ] 0 and B̌(n) ] 0, (n ¥N0), then {Ǩn(x)}.n=0 is a BKOPS
relative to

s (2, 0)
J̌

+
1

A+iB
d(x−i)+

1
A−iB

d(x+i),

and satisfies

Ľ6[y](x)=(x2+1)3 y (6)(x)+18x(x2+1)2 y (5)(x)

+6{(A+16) x4+2(A+11) x2+A+6} y (4)(x)

+24(2A+7)(x3+x) y (3)

+12{(A2+B2+7A+6) x2−2Bx+A2+B2+5A+6} yœ(x)

+24{(A2+B2+A) x−B} yŒ(x)

=ln y(x).

Note that {Ǩn(x)}.n=0 is symmetric if and only if B=0.
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Finally we make some conjectures on the BKOPS class, which will
improve Magnus’ conjecture. Let {Qn(x)}.n=0 be a BKOPS relative to y of
order 2r \ 4 satisfying the differential equation (4.2). Then we conjecture:

(C-1) y=s+n, where s is a classical moment functional satisfying
(A(x) s)Œ=B(x) s with some polynomials A(x) of degree [ 2, B(x) of
degree 1 and n is a distribution with its support at the zeros of A(x);

(C-2) a2r(x)=A(x)r and a2r−1(x)=rA(x)r−1 [(r−1) AŒ(x)+B(x)]
(see (4.3)).
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